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Abstract

This paper presents a simplified numerical model based on a hierarchical trigonometric functions set to
predict the low frequency vibration behaviour of a plate backed by a thin foam layer. The base metal plate
is excited in bending vibrations with a point load and can have various boundary conditions. The poro-
elastic layer is modelled using the mixed displacement–pressure formulation of the Biot–Allard’s theory.
The base plate and the solid phase of the porous medium are described as an equivalent visco-elastic plate.
The poro-elastic’s fluid phase is coupled with the equivalent plate displacements.
Comparisons with complete three-dimensional poro-elastic finite element solutions and experimental

data are presented to define a domain of validation for the proposed simplified model.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered structures including poro-elastic materials, like polymer foams, are widely used
for sound absorption and vibration damping in buildings construction and in the transport
industries. For a quick analysis of some vibro-acoustic or transmission phenomena, a simple
prediction involving a metal plate backed by a poro-elastic material can be used.
Prediction of the vibro-acoustic behaviour of poro-elastic materials can be done using the Biot–

Allard’s theory [1,2]. This theory describes the poro-elastic material as two phases coupled in time
and space. The poro-elastic material is described with five geometrical parameters: the porosity f;
the flow resistivity s; the tortuosity aN; the viscous characteristic length L; the thermal
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characteristic length L0 and the mechanical parameters of the skeleton and the saturating fluid’s
properties.
Evaluation of the performance of finite size multilayered structures involving porous media is

usually done with complete three-dimensional poro-elastic finite element models which lead to
significant computation time and memory usage. However, some practical configurations can be
more easily described by using assumptions about the porous material behaviour.
Investigating the dissipation mechanisms in a thin foam layer bonded onto a simply supported

aluminium plate, Dauchez et al. [3] found that structural damping of the solid phase is the major
dissipative mechanism occurring within the material for stiff foams at low frequencies.
Consequently, neglecting the material’s fluid phase, these authors proposed to use an equivalent
visco-elastic plate model for the very first modes. This model, which does not include any viscous
dissipation in the porous medium is almost suitable for low resistivity materials. Rigobert [4] tried
to extend this work to the case of highly resistive foams and fibrous materials, for which the
viscous dissipation cannot be neglected any longer. In this new model, a detailed three-
dimensional finite element based solution of the problem is required to determine a modified
structural damping coefficient of the equivalent plate accounting for structural and viscous
dissipation occurring in the porous layer. Although the method gives good results, it has no
advantage over a complete calculation.
Etchessahar et al. [5] have recently presented a model based on the displacement-pressure

formulation of the Biot–Allard theory [6] to simulate bending vibrations of thin simply-supported
or clamped stand-alone poro-elastic plates. This model’s advantage is a rigorous description of the
poro-elastic medium with its two phases and interactions between these phases. Experiments have
shown that this model is relevant to predict the first resonances of high density porous materials.
The experimental realization is however difficult to set up for a wide variety of materials.
In this paper, a new model is introduced, built on the conclusions of Dauchez et al. [3] and

Etchessahar et al. [5], to simulate the vibration behaviour of an elastic plate backed by an
isotropic polymeric foam (Fig. 1). The porous layer is described by the mixed displacement-
pressure formulation of the Biot–Allard theory [6]. The base plate and the porous solid phase are
modelled as an equivalent visco-elastic plate and assumed admissible functions are used to
describe the fluid phase pressure. The Rayleigh–Ritz method using a trigonometric functions set

ARTICLE IN PRESS

Metal plate

Ponctual

b

a

y
x

z

layer
Foam force

hm

Fig. 1. Aluminium plate under concentrated load and backed by a foam.

L. Jaouen et al. / Journal of Sound and Vibration 280 (2005) 681–698682



[7] is employed to solve the variational equations of motion. Thus, various boundary conditions
can be applied to the base plate: simply-supported, clamped or free edges.

2. Theoretical background

This section presents the mixed displacement–pressure formulation of the Biot–Allard’s theory
[1,2,6] with corrections for viscous and thermal dissipative effects introduced by Johnson et al. [8]
and Champoux et al. [9] respectively. Each dissipation mechanism is briefly discussed before
introducing the variational formulation for a plate-porous system in bending vibrations.
In the following, the B symbol denotes a frequency dependent quantity.

2.1. The Biot–Allard’s poroelastic model

Assuming a harmonic time dependence of the form eþjot; the coupled volumetric equations of
equilibrium between the porous two phases as functions of the solid phase displacement field u
and the fluid phase pore pressure p is [6]:

div #rsðuÞ þ o2 *r u ¼ �*g=p; ð1Þ

Dp þ o2 *r22
*R

p ¼ o2*g
*r22
f2

div u: ð2Þ

In the above equations, #rs is the stress tensor of the material’s solid phase in vacuum. *r is the
dynamic effective density of the porous material defined as

*rðoÞ ¼ *r11 �
*r212
*r22

; ð3Þ

where *r12; *r11 and *r22 are complex dynamic densities considering viscous effects:

*r12ðoÞ ¼ r12 �
*b

jo
; ð4Þ

*r11ðoÞ ¼ r11 þ
*b

jo
; ð5Þ

*r22ðoÞ ¼ r22 þ
*b

jo
; ð6Þ

with
r12 ¼ �fr0ðaN � 1Þ; ð7Þ

r11 ¼ r1 � r12; ð8Þ

r22 ¼ r2 � r12; ð9Þ

*bðoÞ ¼ f2s *GðoÞ; ð10Þ

j ¼
ffiffiffiffiffiffiffi
�1

p
: ð11Þ
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r1 and r2 are the solid and fluid phase densities described as functions of the medium’s porosity
f; the density of the material which constitutes the skeleton rs and the fluid density
r0 ð1:23 kg m�3 at 18�C under 1:013� 105 Pa):

r1 ¼ ð1� fÞrs; ð12Þ

r2 ¼ fr0: ð13Þ

*b is a complex and frequency dependent viscous damping coefficient function of a viscosity
correction factor *G representing the fact that the pore flow departs from a Poiseuille’s flow when
the angular frequency o increases. The expression of *G according to the Johnson et al. model [8] is

*GðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j

4a2
N
mr0o

s2L2f2

s
; ð14Þ

where m is the viscosity of air ð1:84 N s m�2 at 18�C under 1:013� 105 Pa).
*g; *R; introduced in Eqs. (1) and (2), and *Q are frequency dependent terms which can be written

as [10]:

*gðoÞ ¼
r0
*r22

f2 � 1; ð15Þ

*RðoÞ ¼ f *KeðoÞ; ð16Þ

and

*QðoÞ ¼ ð1� fÞ *KeðoÞ ð17Þ

with

*KeðoÞ ¼
gP0

g� ðg� 1Þ 1þ
8m

jL02B2or0
*G 0

� ��1: ð18Þ

*Ke is the air bulk modulus accounting for thermal dissipation between the two porous phases
[2]. Note that these expressions assume that the bulk modulus of the foam is small compared to
the bulk modulus of the material from which the skeleton is made; which is valid for the majority
of foams used in acoustics. P0 is the atmospheric pressure, g the ratio of specific heats (its value is
1.4 for air at 18�C under 1:013� 105 Pa), B2 is the Prandtl number (B2 ¼ 0:71 at 18�C under
1:013� 105 Pa) and finally *G 0 is a thermal correction factor [9] similar to *G introduced earlier:

*G 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j

L02B2r0o
16m

s
: ð19Þ

The right hand side members in both equations (1) and (2) can be regarded as source terms.
They couple the two phases dynamic responses. Setting these source terms to zero leads to an
elastodynamic equation of the material in vacuum and a classical equivalent fluid (rigid skeleton
[2]) equation respectively.
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2.2. Dissipation mechanisms

Among the three dissipation mechanisms occurring within a porous layer: structural, viscous
and thermal, the latter has been found negligible at low frequencies for typical polymeric foams of
various thicknesses in plate-foam configurations [11]. Thus, no particular focus on thermal
dissipation is done in this work.

2.2.1. Structural damping

Structural damping will be included in the present model using the complex modulus
convention for each of the two layers:

*E�ðoÞ ¼ *EðoÞ½1þ j*ZðoÞ
: ð20Þ

In the above equation, � denotes a complex variable.
The structural damping *Z can also be used to account for various dissipation phenomena such

as the acoustic radiation and losses through the boundaries. However, these two dissipation
mechanisms are neglected here (i.e., light fluid and lossless boundaries assumptions).

2.2.2. Viscous dissipation
For stiff polymer foams, structural damping is the major dissipative phenomenon at

low frequencies [3]. As a consequence, it is assumed that the two layers system can be
described as an equivalent viscous plate, the added viscous dissipation will be included in the
present model using the foam’s effective density *r [1,2] and assuming an admissible variation for
the fluid phase pressure based on the boundary conditions at the plate-porous and porous-air
interfaces.

2.2.3. Dissipated powers
Expressions of the dissipated powers which will be used to interpret the results are given

in this section where Om denotes the porous material volume and Im the imaginary part of a
complex quantity. A definition of the power dissipated by structural effects inside the porous
medium is

Ps
diss ¼

1
2
Im o

Z
Om

#rsðuÞ : esðuÞdO
� �

: ð21Þ

es is the solid phase strain tensor.
Approximations of the powers dissipated by viscous and thermal effects when the ratio *Q= *R

can be considered real are respectively:

Pv
diss ¼

1
2
Im �o3

Z
Om

*ru � u� dOþ
Z
Om

f2

o *r22
=p � ð=pÞ� dO� 2o*g

Z
Om

Reð=p � u�ÞdO
� �

; ð22Þ

Pt
diss ¼

1
2
Im �o

Z
Om

f2

*R
p � p� dO

� �
: ð23Þ
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2.3. Variational formulation

In the following, the variational formulation for an elastic plate backed by a poro-elastic layer
is described. The base plate is excited by a transverse point load of amplitude f0 at position
ðx0; y0Þ: The porous material is supposed to be perfectly bonded onto the plate.

2.3.1. Weak integral formulation
Below, superscripts p; m; s and f denote respectively a plate variable, a global porous variable, a

material’s solid or fluid phase related variable. Subscript n denotes a displacement normal to the
plate plane. Op; Om and dOp-dOm denote respectively the plate volume, the porous material
volume and the plate-porous interface. ei and ri are strain and stress tensor of layer i:
Let du and dp be, respectively, admissible variations of the solid phase displacements field u and

the fluid phase pressure p: Uf is the displacement vector of the material’s fluid phase. Assuming a
harmonic time dependence of the form eþjot; the weak ðu; pÞ integral formulation of the Biot’s
theory [1,12] isZ

Op

rp : dep dO� rpo2

Z
Op

up � dup dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
plate domain

þ
Z
Om

#rs : des dO� *ro2

Z
Om

us � dus dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
porous material’s solid phase

þ
Z
Om

f2

o2 *r22
=p � =dp �

f2

*R
pdp

� �
dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

porous material’s fluid phase

�
Z
Om

*gþ f 1þ
*Q

*R

� �� �
dð=p � usÞdO� f 1þ

*Q

*R

� �Z
Om

dðp � divðusÞÞdO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coupling terms between the porous material’s two phases

�
Z
dOp-dOm

ðrp � npÞ � dup dS �
Z
dOp-dOm

ðrm � nmÞ � dus dS

�
Z
dOp-dOm

fðUf
n � us

nÞdp dS ¼
Z
dOp

fidui dS: ð24Þ

The relations to be satisfied at the interface between the elastic base plate and the porous medium
are [12]:

rp � np ¼ �rm � nm; ð25Þ

up ¼ um; ð26Þ

Uf
n � us

n ¼ 0; ð27Þ

where np and nm denote the exterior normals to the plate or the material domain.
The condition (25) ensures the continuity of the normal stresses (using the choosen mixed

variational formulation, all the other associated boundary terms cancel out [12]). The second
condition ensures the continuity of the displacement vectors between the two layers. And finally,
the third equation (27) ensures the continuity of the relative mass flux vector across the boundary.
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These conditions represent a perfect bond between the porous layer’s solid phase and the plate
and an impervious condition for the pore pressure at the plate-porous interface.

2.3.2. Displacement fields

The classical elastic thin plate theory [13] is used to describe the base plate displacement field.
The neutral plan of the two layer system can be fixed to the mid plan of the plate, if a metal plate
is considered, regardless of the difference in Young’s moduli order between the plate and the
foam. Thus for the plate we can write:

upðx; y; z; tÞ ¼ �z
@w

@x
; ð28Þ

vpðx; y; z; tÞ ¼ �z
@w

@y
; ð29Þ

wpðx; y; z; tÞ ¼ wðx; y; tÞ; ð30Þ

where u and v are the first order approximation of the plate’s in-plane displacements and t denotes
time.
The displacement field of the porous layer solid phase exhibits both bending and shear

(cf. Fig. 2); the transverse displacement w is supposed to be the same for the two layers:

umðx; y; z; tÞ ¼ �z
@w

@x
� z �

hp

2

� �
cxðx; y; tÞ; ð31Þ

vmðx; y; z; tÞ ¼ �z
@w

@y
� z �

hp

2

� �
cyðx; y; tÞ; ð32Þ

wmðx; y; z; tÞ ¼ wðx; y; tÞ; ð33Þ

where cx and cy are the deviation angles due to shear strain.

2.3.3. Application of Hamilton’s principle
The plate and the material’s solid phase are supposed to be isotropic, homogeneous,

rectangular of dimensions a � b and of uniform thicknesses hp and hm ðhp; hm{ða; bÞÞ: Thus, using
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Hamilton’s principle, the third and fourth integrals of Eq. (24) become (see Ref. [3] for a detailed
similar calculus):

1

2

Z a=2

�a=2

Z b=2

�b=2
D2

@2w

@x2

� �2

þ
@2w

@y2

� �2

þ2nm
@2w

@x2

@2w

@y2
þ 2ð1� nmÞ

@2w

@x@y

� �2
" #(

þ D3
@cx

@x

� �2

þ
@cy

@y

� �2

þ2 nm
@cx

@x

@cy

@y
þ
1� nm

2

@cx

@y
þ

@cy

@x

� �2
" #

þ 2D4
@2w

@x2

@cx

@x
þ

@2w

@y2
@cy

@y

� �
þ nm

@2w

@x2

@cy

@y
þ

@2w

@y2
@cx

@x

� ��

þ ð1� nmÞ
@2w

@x@y

@cx

@y
þ

@cy

@x

� ��
þ D5½c

2
x þ c2

y


)
dx dy

� 1
2
*ro2

Z a=2

�a=2

Z b=2

�b=2

Z z2

z1

w2 þ z
@w

@x
þ z �

hp

2

� �
cx

� �2
 

þ z
@w

@y
þ z �

hp

2

� �
cy

� �2
!
dx dy dz; ð34Þ

where the Di denote the following integrals:

D2 ¼
Em

ð1� n2mÞ

Z z2

z1

z2 dz; ð35Þ

D3 ¼
Em

ð1� n2mÞ

Z z2

z1

z �
hp

2

� �2

dz; ð36Þ

D4 ¼
Em

ð1� n2mÞ

Z z2

z1

z z �
hp

2

� �
dz; ð37Þ

D5 ¼
k2Em

2ð1þ nmÞ

Z z2

z1

dz; ð38Þ

Em and nm are the Young’s modulus and the Poisson ratio of the porous medium, z1 ¼ hp=2;
z2 ¼ ðhp=2Þ þ hm and k2 is the Mindlin’s correction factor [14] taken as 5

6
:

The first two integrals of Eq. (24) have the same form, one might only change the integration
domain and rigidities to fit the first layer’s boundaries.
The integral related to the material’s fluid phase is

1

2

f2

o2 *r22

Z
Om

@p

@x

� �2

þ
@p

@y

� �2

þ
@p

@z

� �2
" #

dO�
1

2

f2

*R

Z
Om

p2 dO ð39Þ
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and the coupling terms can be written:

ð*gþ 1Þ
Z
Om

@p

@x
z
@w

@x
þ z �

hp

2

� �
cx

� �
þ

@p

@y
z
@w

@y
þ z �

hp

2

� �
cy

� �
�

@p

@z
w

� �
dO; ð40Þ

Z
Om

p z
@2w

@x2
þ z �

hp

2

� �
@cx

@x
þ z

@2w

@y2
þ z �

hp

2

� �
@cy

@y

� �
dO; ð41Þ

noting that, from (18) and (16), f *Q= *R ¼ ð1� fÞ:
Finally, the three last integrals of (24) vanish because of boundary conditions at the plate-

porous interface (see Eqs. (25), (26) and (27)).

3. Numerical implementation

3.1. Rayleigh–Ritz approximation

The Rayleigh–Ritz discretization method is used to solve the problem for classical boundary
conditions on the base plate. The solid displacements are discretized as

wðx; y; tÞ ¼
XMw

m¼1

XNw

n¼1

qwmnðtÞamðxÞanðZÞ; ð42Þ

cxðx; y; tÞ ¼
XMx

m¼1

XNx

n¼1

qxmnðtÞ
dam

dx
ðxÞanðZÞ; ð43Þ

cyðx; y; tÞ ¼
XMy

m¼1

XNy

n¼1

qymnðtÞamðxÞ
dan

dZ
ðZÞ; ð44Þ

where qwmn; qxmn; qymn are the unknown coefficients; x and Z are dimensionless space variables:
x ¼ 2x=a � 1; Z ¼ 2y=b � 1: The trial functions a are described in Section 3.2.
The acoustic pressure of the fluid phase is constructed from the expression of the transverse

displacement w:

pðx; y; z; tÞ ¼
XMw

m¼1

XNw

n¼1

XRp

r¼1

qpmnrðtÞamðxÞanðZÞprðzÞ ð45Þ

with

prðzÞ ¼
XRp

r¼1

cos
rpðz � hp=2Þ

2hm

; r odd ð46Þ

Note that the used trial functions for the pressure are admissible in the sense that they satisfy
the boundary conditions at z ¼ hp=2 and z ¼ hp=2þ hm: the derivative of the acoustic pressure is
fixed to zero at the plate–porous interface (impervious condition), while the pressure is supposed
to be zero at the porous–air interface (no fluid loading is implemented).
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3.2. Functions set

The functions set of Beslin and Nicolas [7] is used. This functions set, built from trigonometric
functions, is a simple and easy way to handle various boundary conditions with both numerical
stability and efficiency compared to other sets such as polynomials. The order of a amðxÞ function
is not related to a power of x but to the number of oscillations of the trigonometric function. The
functions are indefinitely derivable and only a low and constant number of basic operations is
required to integrate matrices with no particular care of roundoff error.
The functions are of the form:

amðxÞ ¼ sinðamxþ bmÞsinðcmxþ dmÞ ð47Þ

with coefficients am; bm; cm and dm defined in Table 1.
The selection of the basis functions used to describe w allows for fixing various boundary

conditions for the base plate:

* free : functions of order m equal or greater than 1 are used (mX1).
* simply supported: m ¼ 2; 4 and mX5:
* clamped: mX5:

The whole functions set is used to approximate angles cx and cy to ensure a free rotation of the
second layer.
Using this trigonometric set of functions, Eqs. (34), (39), (40) and (41) are written in terms of

the unknown coefficients qwmn; qxmn; qymn: Once solved, the classical vibro-acoustic indicators of
the problem are computed: quadratic velocity in the plate, quadratic velocity and pressure in the
porous layer, dissipated powers in the two layers system [4].

4. Experiments

To validate the model, comparisons with complete three-dimensional poro-elastic finite element
models and experimental data are presented below for various configurations.
Two complete models are used: MNS/Nova [6,12] involving linear elements and SuperNova

[15] a hierarchical and parallel version of the first one. Both have been extensively validated.
Results from these models are quite the same for each simulation so they will indifferently be
referenced as ‘‘Complete model’’ in the figures.
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Table 1

Coefficients am; bm; cm and dm of the functions set

Order Coefficient Coefficient Coefficient Coefficient

m am bm cm dm

1 p=4 3p=4 p=4 3p=4
2 p=4 3p=4 �p=2 �3p=2
3 p=4 �3p=4 p=4 �3p=4
4 p=4 �3p=4 p=2 �3p=2
m > 4 ðm � 4Þp=2 ðm � 4Þp=2 p=2 p=2
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4.1. Experimental set-up and numerical considerations

The experimental set-up is shown in Fig. 3. The porous layer is glued to an aluminium plate
with a light spray specific glue or a thin double sided adhesive. To ensure that the observed
vibration modification is due to the added material, several tests have been done. These
measurements show that the adhesive layer’s presence can affect the results. In particular, it must
be kept to a minimum thickness. Air gap must also be avoided.
An electrodynamic shaker driven by a white noise signal excites the aluminium plate by a point

force. The input force is measured by means of a force transducer. The transverse velocity of the
plate is measured by a light accelerometer and integrated over time for thick plates ð3:175 mmÞ or
measured by a laser vibrometer for thinner plates ð1:2 mmÞ: The force and velocity signals are
collected through a spectrum analyzer to calculate Frequency Response Functions (FRF) or
estimate the mean quadratic velocity of the plate. Measurements have been done at 20�C; under
980 to 1000 mbar of static pressure with 15–20% of relative humidity.
Simulations were done using the following plan meshes to obtain convergences: 15 by 17

elements for the complete linear model, 2 by 2 elements with 6 orders per elements for the
complete hierarchical model and one element with 14 orders of interpolation for the proposed
simplified model. In the thickness of the poro-elastic media, 7 elements were used for the complete
linear model, 1 element with order 8 for the complete hierarchical one and 1 element with order 2
for the simplified model’s fluid phase (cf. Eq. (46)).
As previously mentioned, the material’s moduli and structural damping are frequency

dependent. Their quasistatic properties, measured following the method described by Langlois
et al. [16], are used in the simulations. This will explain the rising differences between experimental
and numerical data with increasing frequency.
The dimensions of the aluminium plates used and quasistatic properties of the two rather

different foams tested are given in Tables 2 and 3.
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Fig. 3. Schema of the experimental set-up.
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4.2. Results

Fig. 4 presents the numerical results for a 1:2 mm simply supported aluminium plate treated by
20 mm of the polyurethane foam B. The contributions to the dissipated power of the different
mechanisms are shown in Fig. 5. The results confirm earlier assumptions for this stiff foam:

* thermal dissipation is negligible in the low frequency range,
* the foam structural damping is the major dissipative phenomenon within the porous layer at
low frequencies (it is maximum at the system resonances), and

* viscous dissipation remains weak in the frequency range of interest.

Figs. 6 and 7 show comparisons for a thicker plate (3:175 mm or 1
8
in) with clamped or free

boundary conditions. Good agreements are found between the complete 3-D and the simplified
model calculations for these three different cases in the whole frequency range.
Comparisons between models and experimentations can be done with a few number of FRF.

Fig. 8 shows an estimation of the mean quadratic velocity for a 3:175 mm aluminium plate with
25:4 mm (1 in) of the soft melamine foam M using an average of 6 FRF. The point force is at
coordinates ð390 mm; 120 mmÞ; measurement points are reported in Table 4. A good agreement is
again found between measurements and the simplified model although the material is supposed to
be isotropic and its elastic parameters are considered constant in frequency.

4.3. Limitations of the model

To illustrate the limitations of the proposed model, Fig. 9 shows the results for an 3:175 mm
aluminium plate treated by 76:2 mm ð3 inÞ of the M foam. Below 350 Hz the numerical results
agree well in frequency and amplitude. Above 350 Hz the damping is underestimated.
This frequency corresponds to the first quarter wavelength frequency resonance of the frame

[2]. Above 350 Hz; the constant transverse displacement assumption over the multilayer thickness
is no more valid, thus fixing an upper frequency limit to the proposed simplified model (one
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Table 2

Dimensions of the base aluminium plates

Plate Length Width Thickness

(mm) (mm) (mm)

1 350 220 1.2

2 420 480 3.175

Table 3

Properties of aluminium and foams

Material E n r1 Z f s aN L L0

ðN m�2Þ ðkg m�3Þ ðN s m�4Þ ð10�6 mÞ ð10�6 mÞ

Aluminium 70 � 109 0.33 2740.00 0.001 — — — — —

Foam B 845 000 0.30 31.16 0.100 0.96 32 000 1.7 90 165

Foam M 160 000 0.44 8.35 0.060 0.99 12 600 1.0 78 192
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Fig. 5. Dissipation mechanisms distribution for a 1:2 mm simply supported aluminium plate treated with 20 mm of

foam B. —–: Structural damping (plate), - - -: Structural damping (foam), -�-�-: Viscous effects, ??: Thermal effects.

Thermal dissipation is too close to zero to be seen clearly on this scale.
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Fig. 4. Mean quadratic velocity of a 1:2 mm simply supported aluminium plate backed with 20 mm of foam B.

—–: Simplified model, - - -: Complete model.
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Fig. 6. Mean quadratic velocity of a 3:175 mm ð1=800Þ clamped aluminium plate backed with 20 mm of foam B.

—–: Simplified model, - - -: Complete model.
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Fig. 7. Mean quadratic velocity of a 3:175 mm free aluminium plate backed with 20 mm of foam B. —–: Simplified

model, - - -: Complete model.
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should keep in mind that the purpose of this work is to reduce computation time for plate-porous
configuration systems, not to test efficiency of high dissipative porous materials). A complete
three-dimensional poro-elastic finite element model is required to calculate well the material’s
solid phase displacements and the viscous dissipation associated to the new relative displacements
of the foam’s two phases (cf. Fig. 10).
In the previous cases, the first quarter wavelength frequency resonances occur beyond the upper

limit of the experimental frequency.

4.4. Performances

Due to slow convergence of linear poro-elastic elements, accurate prediction requires about
5000 degrees-of-freedom (DOF) for a complete classical linear finite element code. This number of
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Fig. 8. Mean quadratic velocity of a 3:175 mm simply supported aluminium plate backed with 25:4 mm ð100Þ of foam
M. —–: Simplified model simulation, -�-�-: Measurements.

Table 4

FRF measurement points for Fig. 8

Point Coordinates

(mm)

1 (90; 90)

2 (90; 270)

3 (210; 120)

4 (210; 330)

5 (330; 210)

6 (330; 390)
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DOF falls to 2000 using a complete hierarchical finite element model and reduces even further to
600 for the proposed simplified method. However, it must be noted that the numerical codes do
not use the same plate models: the 3-D linear finite element model uses membrane displacements
and Kirchhoff quadrangle element with bubbles functions and static condensation [17]. The 3-D
hierarchical code uses Mindlin assumption with MSC/Probe [18] functions set.
Noting that the matrices terms are frequency dependent, the numerical problem cannot

be solve easily by a modal approach [19]. A direct solver is thus used to obtain the results
for 800 frequency points. In term of time usage on a 1 GHz 80686 CPU, the complete linear
model calculation time is about 20 h; the hierarchical model and simplified model ones are about
1 h and 2 min; respectively (for a simple plate problem, calculation times are: 2 h and 30 min;
10 min and 20 s).

5. Conclusions

The proposed simplified model to simulate the vibration behaviour of an elastic plate backed by
a polymeric foam has been numerically and experimentally validated for two rather different
foams (a stiff and a soft one) and various boundary conditions.
This model is relevant when the thickness of the porous material allows verification of the

constant transverse displacement over the multilayer assumption. Consequently it cannot be used
to predict the mechanical behaviour of high thickness foams bonded onto metal plates beyond the
first quarter wavelength frequency resonance. However, the model serves its purpose by reducing
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Fig. 9. Mean quadratic velocity of a 3:175 mm simply supported aluminium plate backed by 76:2 mm ð300Þ of foam M.

—–: Simplified model, - - -: Complete model, -�-�-: Measurements.
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the computation time and memory usage for plate-porous configurations and offers an efficient
tool to quickly characterize the mechanical properties of thin foam samples in a low frequency
band by an inverse method.
A point worth mentioning is the fact that the poro-elastic layer is modelled as an isotropic

material although this is not the case for most of the foams. Nevertheless an acceptable
correlation is found between simulations and experimental data. An extension to anisotropic
foams would be an interesting complement to the present study.
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